Spontaneous and evoked release of newly synthesized [14C]-GABA from rat brain slices

C.M. GAUCHY, L.L. IVERSEN & T.M. JESSELL

M.R.C. Neurochemical Pharmacology Unit, Department of Pharmacology, University of Cambridge

After local perfusion of the monkey brain in vivo with [14C]-glucose, newly formed [14C]-amino acids, including GABA can be detected (De Feudis, Delgado & Roth, 1969). No method, however, for monitoring continuous release of newly synthesized amino acids in vitro has been reported. The present technique was devised to measure the release of newly synthesized [14C]-GABA from brain slices during perfusion with radioactive pyruvate as precursor.

Rat cortical slices, chopped in two directions at 0.3 mm intervals, weighing 100 mg, were placed in a Perspex tissue chamber and perfused at 37°C with Krebs bicarbonate [2-14 C]-pyruvic acid medium containing (specific 10 mCi/mmol), 2 µCi/ml, at a rate of 6 ml per hour. Perfusate samples were collected at 10 min intervals and stored on ice. At the end of the perfusion (90-150 min) the slices were homogenized in 0.1 N HCl and after centrifugation the supernatant fraction was used to estimate [14C]-GABA remaining in the slices. In both perfusate and tissue samples [14C]-GABA was estimated by the following procedure. Unchanged [2-14C]-pyruvic acid and acidic products, including acidic amino acids, were removed by retention on a Dowex AG 1-X2 (CH₃COO⁻ form) anion exchange resin and the amino acid containing effluent collected. Basic and neutral compounds in the effluent, including [14C]-GABA, were retained on an Amberlite CG 120 (H⁺ form) cation exchange resin, washed with water and eluted with 1 M triethylamine in 50% methanol. [14C]-GABA in dried eluate samples was selectively isolated by enzymic conversion to [14C]-succinic acid using a

bacterial enzyme preparation as described by Hall, Bownds & Kravitz (1970). The reaction mixture was then passed again over an Amberlite CG 120 (H⁺ form) cation exchange resin. Basic and neutral amino acids were unaffected by the enzyme reaction and were retained by the resin, [14C]-succinic acid formed from [14C]-GABA was collected in the effluent and radioactivity determined by liquid scintillation spectrometry.

The spontaneous release of newly synthesized [14C]-GABA increased during the first 40 min of perfusion, after which a steady state was maintained. Contaminants derived from [2-14C]pyruvic acid in blank samples accounted for less than 10% of radioactivity in the [14C]-succinic acid samples. Raising the potassium concentration in the perfusing medium to 47 mm produced a $229\% \pm 30\%$ (mean \pm s.e. mean, n = 4) increase in release. The ratio of radioactivity remaining in the tissue at the end of perfusion, to the average basal efflux per 10 min collection period was 6.5 ± 0.9 (mean \pm s.e. mean, n = 7). In contrast, when cortical slices were incubated with [3H]-GABA for 30 min, followed by a washout perfusion, the amount of radioactivity remaining in the tissue after 60 min was over 100 times the average basal efflux per 10 min collection period.

Newly synthesized [14C]-GABA may thus be released from a much smaller tissue pool than that labelled by [3H]-GABA taken up from the external medium.

C.G. was supported by grants from the Royal Society and the CIBA Foundation. T.M.J. is an M.R.C. Scholar.

References

DE FEUDIS, F.V., DELGADO, J.M.R. & ROTH, R.H. (1969). Content and release of amino acids and catecholamines in monkey brain. *Nature*, 223, 74-75. HALL, Z.W., BOWNDS, M.D. & KRAVITZ, E.A. (1970). The metabolism of gamma aminobutyric acid in the lobster nervous system. *J. Cell Biol.*, 46, 290-299.